3,111 research outputs found

    Quantum Phase Transition from a Spin-liquid State to a Spin-glass State in the Quasi-1D Spin-1 System Sr1-xCaxNi2V2O8

    Full text link
    We report a quantum phase transition from a spin-liquid state to a spin-glass state in the quasi-one dimensional (1D) spin-1 system Sr1-xCaxNi2V2O8, induced by a small amount of Ca-substitution at Sr site. The ground state of the parent compound (x = 0) is found to be a spin-liquid type with a finite energy gap of 26.6 K between singlet ground state and triplet excited state. Both dc-magnetization and ac-susceptibility studies on the highest Ca-substituted compound (x = 0.05) indicate a spin-glass type magnetic ground state. With increasing Ca-concentration, the spin-glass ordering temperature increases from 4.5 K (for the x = 0.015 compound) to 6.25 K (for the x = 0.05 compound). The observed results are discussed in the light of the earlier experimental reports and the theoretical predictions for a quasi-1D spin-1 system.Comment: 26 pages, 8 figures, 3 table

    Enhanced Raman and photoluminescence response in monolayer MoS2_2 due to laser healing of defects

    Full text link
    Bound quasiparticles, negatively charged trions and neutral excitons, are associated with the direct optical transitions at the K-points of the Brillouin zone for monolayer MoS2_2. The change in the carrier concentration, surrounding dielectric constant and defect concentration can modulate the photoluminescence and Raman spectra. Here we show that exposing the monolayer MoS2_2 in air to a modest laser intensity for a brief period of time enhances simultaneously the photoluminescence (PL) intensity associated with both trions and excitons, together with \sim 3 to 5 times increase of the Raman intensity of first and second order modes. The simultaneous increase of PL from trions and excitons cannot be understood based only on known-scenario of depletion of electron concentration in MoS2_2 by adsorption of O2_2 and H2_2O molecules. This is explained by laser induced healing of defect states resulting in reduction of non-radiative Auger processes. This laser healing is corroborated by an observed increase of intensity of both the first order and second order 2LA(M) Raman modes by a factor of \sim 3 to 5. The A1g_{1g} mode hardens by \sim 1.4 cm1^{-1} whereas the E2g1^1_{2g} mode softens by \sim 1 cm1^{-1}. The second order 2LA(M) Raman mode at \sim 440 cm1^{-1} shows an increase in wavenumber by \sim 8 cm1^{-1} with laser exposure. These changes are a combined effect of change in electron concentrations and oxygen-induced lattice displacements.Comment: 15 pages, 5 figures, Journal of Raman Spectroscopy, 201

    Quantum Size Effects in the Atomistic Structure of Armchair-Nanoribbons

    Full text link
    Quantum size effects in armchair graphene nano-ribbons (AGNR) with hydrogen termination are investigated via density functional theory (DFT) in Kohn-Sham formulation. "Selection rules" will be formulated, that allow to extract (approximately) the electronic structure of the AGNR bands starting from the four graphene dispersion sheets. In analogy with the case of carbon nanotubes, a threefold periodicity of the excitation gap with the ribbon width (N, number of carbon atoms per carbon slice) is predicted that is confirmed by ab initio results. While traditionally such a periodicity would be observed in electronic response experiments, the DFT analysis presented here shows that it can also be seen in the ribbon geometry: the length of a ribbon with L slices approaches the limiting value for a very large width 1 << N (keeping the aspect ratio small N << L) with 1/N-oscillations that display the electronic selection rules. The oscillation amplitude is so strong, that the asymptotic behavior is non-monotonous, i.e., wider ribbons exhibit a stronger elongation than more narrow ones.Comment: 5 pages, 6 figure
    corecore